数学知识:初一到初三数学公式总结

80酷酷网    80kuku.com

关于到现在初一到初三数学公式总结这个话题相信很多小伙伴都是非常有兴趣了解的吧因为这个话题也是近期非常火热的那么既然现在大家都想要知道初一到初三数学公式总结小编也是到网上收集了一些与初一到初三数学公式总结相关的信息那么下面分享给大家一起了解下吧

初中生学习数学要注意知识点公式的总结,下面为大家总结了初一到初三数学公式,仅供大家参考。平方根...

扫码加微信公众号,免费领取资料

扫码加微信公众号,免费领取资料

扫码加微信公众号,免费领取资料

初中生学习数学要注意知识点公式的总结,下面为大家总结了初一到初三数学公式,仅供大家参考。

平方根计算公式

根号内的数可以化成相同或相同则可以相加减,不同不能相加减。

如果根号里面的数相同就可以相加减,如果根号里面的数不相同就不可以相加减,能够化简到根号里面的数相同就可以相加减了。

举例如下:

(1)2√2+3√2=5√2(根号里面的数都是2,可以相加)

(2)2√3+3√2(根号里面的数一个是3,一个是2,不同不能相加)

(3)√5+√20=√5+2√5=3√5(根号内的数虽然不同,但是可以化成相同,可以相加)

(4)3√2-2√2=√2

(5)√20-√5=2√5-√5=√5

根号的乘除法:

√ab=√a·√b﹙a≥0b≥0﹚,如:√8=√4·√2=2√2

√a/b=√a÷√b

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

和差化积公式

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

tanA-tanB=sin(A-B)/cosAcosB

解方程必背公式

乘法与因式分解:

a2-b2=(a+b)(a-b)

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b)(a2+ab+b2)

一元二次方程的解:

-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a

三角不等式:

|a+b|≤|a|+|b|

|a-b|≤|a|+|b|

|a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b|-|a|≤a≤|a|

扇形面积公式是什么

扇形面积公式是S扇=(lR)/2(l为扇形弧长,R为半径)=(1/2)θR2(θ为以弧度表示的圆心角)。

设一扇形的半径为r,弧长为l,面积为S,则S=1/2lR,

若命扇形的顶角(扇形的弧所对的圆心角,叫做扇形的顶角)为a,那么

S=π/360ar2……(1)

S=π/400ar2……(2)

S=1/2ar2……(3)

其中(1)式适用于六十分制,(2)式适用于百分制,(3)式适用于径制(弧度制)。

勾股定理公式

基本公式

在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么勾股定理的公式为a2+b2=c2。

完全公式

a=m,b=(m^2/k-k)/2,c=(m^2/k+k)/2①

其中m≥3

(1)当m确定为任意一个≥3的奇数时,k={1,m^2的所有小于m的因子}

(2)当m确定为任意一个≥4的偶数时,k={m^2/2的所有小于m的偶数因子}

常用公式

(1)(3,4,5),(6,8,10)……3n,4n,5n(n是正整数)。

(2)(5,12,13),(7,24,25),(9,40,41)……2n+1,2n^2+2n,2n^2+2n+1(n是正整数)。

(3)(8,15,17),(12,35,37)……2^2*(n+1),[2(n+1)]^2-1,[2(n+1)]^2+1(n是正整数)。

(4)m^2-n^2,2mn,m^2+n^2(m、n均是正整数,m>n)。

分享到
  • 微信分享
  • 新浪微博
  • QQ好友
  • QQ空间
点击: