数学知识:行列式提取公因式法则

80酷酷网    80kuku.com

关于到现在行列式提取公因式法则这个话题相信很多小伙伴都是非常有兴趣了解的吧因为这个话题也是近期非常火热的那么既然现在大家都想要知道行列式提取公因式法则小编也是到网上收集了一些与行列式提取公因式法则相关的信息那么下面分享给大家一起了解下吧

根据行列式的基本性质将所有行的元素都加到任意一行。出现行列式的行,全部的列的元素都相加的结果...

扫码加微信公众号,免费领取英语学习资料

根据行列式的基本性质将所有行的元素都加到任意一行。出现行列式的行,全部的列的元素都相加的结果是一样的时候,我们要将所有行或所有列加到一起。最后应该把第1列当中的元素“3+λ”提取出来。

什么是行列式

行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或|A|。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。

行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。

公因式

一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。

具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。

分享到
  • 微信分享
  • 新浪微博
  • QQ好友
  • QQ空间
点击: