函数在某点可导意味着在这段函数连续二阶可导什么意思。因为函数可导则函数连续;函数连续不一定可导;不连续的函数一定不可导。
函数可导的充要条件:左导数和右导数都存在并且相等。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
函数在某点可导意味着在这段函数连续二阶可导什么意思。因为函数可导则函数连续;函数连续不一定可导;不连续的函数一定不可导。
函数可导的充要条件:左导数和右导数都存在并且相等。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。