关于到现在线平行于面能推出什么这个话题相信很多小伙伴都是非常有兴趣了解的吧因为这个话题也是近期非常火热的那么既然现在大家都想要知道线平行于面能推出什么小编也是到网上收集了一些与线平行于面能推出什么相关的信息那么下面分享给大家一起了解下吧
一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。一条直线与一个平面...
扫码加微信公众号,免费领取英语学习资料
一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。一条直线与一个平面平行,则该直线垂直于此平面的垂线。线面平行通常采用构造平行四边形来求证。
定理1.平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
已知:a∥b,a?α,b?α,求证:a∥α
反证法证明:假设a与α不平行,则它们相交,设交点为A,那么A∈α
∵a∥b,∴A不在b上
在α内过A作c∥b,则a∩c=A
又∵a∥b,b∥c,∴a∥c,与a∩c=A矛盾。
∴假设不成立,a∥α
向量法证明:设a的方向向量为a,b的方向向量为b,面α的法向量为p。∵b?α
∴b⊥p,即p·b=0
∵a∥b,由共线向量基本定理可知存在一实数k使得a=kb
那么p·a=p·kb=kp·b=0
即a⊥p
∴a∥α
定理2.平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。
已知:a⊥b,b⊥α,且a不在α上。求证:a∥α
证明:设a与b的垂足为A,b与α的垂足为B。
假设a与α不平行,那么它们相交,设a∩α=C,连接BC由于不在直线上的三个点确定一个平面,因此ABC首尾相连得到△ABC
∵B∈α,C∈α,b⊥α
∴b⊥BC,即∠ABC=90°
∵a⊥b,即∠BAC=90°
∴在△ABC中,有两个内角为90°,这是不可能的事情。
∴假设不成立,a∥α。