关于到现在三角函数公式推导过程这个话题相信很多小伙伴都是非常有兴趣了解的吧因为这个话题也是近期非常火热的那么既然现在大家都想要知道三角函数公式推导过程小编也是到网上收集了一些与三角函数公式推导过程相关的信息那么下面分享给大家一起了解下吧
三角函数是数学中一种常见的关于角度的函数,对于很多同学来说有点难度,下面小编整理了三角函数公式推导过程,希望对大家有所帮助!万能公式推导sin2α=2sinαcosα=2sinαcosα/[...
资源下载地址
三角函数是数学中一种常见的关于角度的函数,对于很多同学来说有点难度,下面小编整理了三角函数公式推导过程,希望对大家有所帮助!
万能公式推导
sin2α=2sinαcosα=2sinαcosα/[cos2(α)+sin2(α)],
(因为cos2(α)+sin2(α)=1)
再把分式上下同除cos^2(α),可得sin2α=2tanα/[1+tan2(α)]
然后用α/2代替α即可。
同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。
和差化积公式推导过程
首先,我们知道sin(a+b)=sinacosb+cosasinb,sin(a-b)=sinacosb-cosasinb我们把两式相加就得到sin(a+b)+sin(a-b)=2sinacosb
同理,若把两式相减,就得到cosasinb=
[sin(a+b)-sin(a-b)]/2同样的,我们还知道cos(a+b)=cosacosb-sinasinb,cos(a-b)=cosacosb+sinasinb
所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosacosb
同理,两式相减我们就得到sinasinb=-[cos(a+b)-cos(a-b)]/2
这样,我们就得到了积化和差的公式:
cosasinb=[sin(a+b)-sin(a-b)]/2
sinasinb=-[cos(a+b)-cos(a-b)]/2
有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式
我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
把a,b分别用x,y表示就可以得到和差化积的四个公式:
sinx+siny=2sin[(x+y)/2]cos[(x-y)/2]
sinx-siny=2cos[(x+y)/2]sin[(x-y)/2]
cosx+cosy=2cos[(x+y)/2]cos[(x-y)/2]cosx-cosy=-2sin[(x+y)/2]sin[(x-y)/2]
三倍角公式推导
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=[2sinαcos2(α)+cos2(α)sinα-sin3(α)]/[cos3(α)-cosαsin2(α)-2sin2(α)cosα]
上下同除以cos3(α),得:
tan3α=[3tanα-tan3(α)]/[1-3tan2(α)]
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos2(α)+[1-2sin2(α)]sinα=2sinα-2sin3(α)+sinα-2sin3(α)
=3sinα-4sin3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=[2cos2(α)-1]cosα-2cosαsin2(α)
=2cos3(α)-cosα+[2cosα-2cos3(α)]
=4cos3(α)-3cosα
即:
sin3α=3sinα-4sin3(α)
cos3α=4cos3(α)-3cosα
n倍角三角函数公式的推导
利用欧拉公式推导
事实上,对于任意n倍角三角函数公式还可以由欧拉公式推导:
cosnA+isinnA=einA=e(iA)n=(cosA+isinA)n
分别由左右两边实部和虚部相等,可以推导出n倍角余弦和正弦三角函数公式。以三倍角余弦公式为例,cos3A=C(30)cos3A-C(32)sin2AcosA=cos3A-3sin2AcosA=4cos3A-3cosA
其余的任意n倍角三角函数公式(包括正弦、余弦、正切)则都可以由二项式定理相应地写出来。
扫码加微信公众号,免费领取英语学习资料