MD5算法研究(2)

80酷酷网    80kuku.com

  算法FF(b,c,d,a,M3,22,0xc1bdceee)
   FF(a,b,c,d,M4,7,0xf57c0faf)
   FF(d,a,b,c,M5,12,0x4787c62a)
   FF(c,d,a,b,M6,17,0xa8304613)
   FF(b,c,d,a,M7,22,0xfd469501)
   FF(a,b,c,d,M8,7,0x698098d8)
   FF(d,a,b,c,M9,12,0x8b44f7af)
   FF(c,d,a,b,M10,17,0xffff5bb1)
   FF(b,c,d,a,M11,22,0x895cd7be)
   FF(a,b,c,d,M12,7,0x6b901122)
   FF(d,a,b,c,M13,12,0xfd987193)
   FF(c,d,a,b,M14,17,0xa679438e)
   FF(b,c,d,a,M15,22,0x49b40821)

  第二轮

   GG(a,b,c,d,M1,5,0xf61e2562)
   GG(d,a,b,c,M6,9,0xc040b340)
   GG(c,d,a,b,M11,14,0x265e5a51)
   GG(b,c,d,a,M0,20,0xe9b6c7aa)
   GG(a,b,c,d,M5,5,0xd62f105d)
   GG(d,a,b,c,M10,9,0x02441453)
   GG(c,d,a,b,M15,14,0xd8a1e681)
   GG(b,c,d,a,M4,20,0xe7d3fbc8)
   GG(a,b,c,d,M9,5,0x21e1cde6)
   GG(d,a,b,c,M14,9,0xc33707d6)
   GG(c,d,a,b,M3,14,0xf4d50d87)
   GG(b,c,d,a,M8,20,0x455a14ed)
   GG(a,b,c,d,M13,5,0xa9e3e905)
   GG(d,a,b,c,M2,9,0xfcefa3f8)
   GG(c,d,a,b,M7,14,0x676f02d9)
   GG(b,c,d,a,M12,20,0x8d2a4c8a)

  第三轮

   HH(a,b,c,d,M5,4,0xfffa3942)
   HH(d,a,b,c,M8,11,0x8771f681)
   HH(c,d,a,b,M11,16,0x6d9d6122)
   HH(b,c,d,a,M14,23,0xfde5380c)
   HH(a,b,c,d,M1,4,0xa4beea44)
   HH(d,a,b,c,M4,11,0x4bdecfa9)
   HH(c,d,a,b,M7,16,0xf6bb4b60)
   HH(b,c,d,a,M10,23,0xbebfbc70)
   HH(a,b,c,d,M13,4,0x289b7ec6)
   HH(d,a,b,c,M0,11,0xeaa127fa)
   HH(c,d,a,b,M3,16,0xd4ef3085)
   HH(b,c,d,a,M6,23,0x04881d05)
   HH(a,b,c,d,M9,4,0xd9d4d039)
   HH(d,a,b,c,M12,11,0xe6db99e5)
   HH(c,d,a,b,M15,16,0x1fa27cf8)
   HH(b,c,d,a,M2,23,0xc4ac5665)

  第四轮

   II(a,b,c,d,M0,6,0xf4292244)
   II(d,a,b,c,M7,10,0x432aff97)
   II(c,d,a,b,M14,15,0xab9423a7)
   II(b,c,d,a,M5,21,0xfc93a039)
   II(a,b,c,d,M12,6,0x655b59c3)
   II(d,a,b,c,M3,10,0x8f0ccc92)
   II(c,d,a,b,M10,15,0xffeff47d)
   II(b,c,d,a,M1,21,0x85845dd1)
   II(a,b,c,d,M8,6,0x6fa87e4f)
   II(d,a,b,c,M15,10,0xfe2ce6e0)
   II(c,d,a,b,M6,15,0xa3014314)
   II(b,c,d,a,M13,21,0x4e0811a1)
   II(a,b,c,d,M4,6,0xf7537e82)
   II(d,a,b,c,M11,10,0xbd3af235)
   II(c,d,a,b,M2,15,0x2ad7d2bb)
   II(b,c,d,a,M9,21,0xeb86d391)

  常数ti可以如下选择:

  在第i步中,ti是4294967296*abs(sin(i))的整数部分,i的单位是弧度。(4294967296等于2的32次方)
所有这些完成之后,将A、B、C、D分别加上a、b、c、d。然后用下一分组数据继续运行算法,最后的输出是A、B、C和D的级联。

  当你按照我上面所说的方法实现MD5算法以后,你可以用以下几个信息对你做出来的程序作一个简单的测试,看看程序有没有错误。

   MD5 ("") = d41d8cd98f00b204e9800998ecf8427e
   MD5 ("a") = 0cc175b9c0f1b6a831c399e269772661
   MD5 ("abc") = 900150983cd24fb0d6963f7d28e17f72
   MD5 ("message digest") = f96b697d7cb7938d525a2f31aaf161d0
   MD5 ("abcdefghijklmnopqrstuvwxyz") = c3fcd3d76192e4007dfb496cca67e13b
   MD5 ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789") =
d174ab98d277d9f5a5611c2c9f419d9f
   MD5 ("123456789012345678901234567890123456789012345678901234567890123456789
01234567890") = 57edf4a22be3c955ac49da2e2107b67a

  如果你用上面的信息分别对你做的MD5算法实例做测试,最后得出的结论和标准答案完全一样,那我就要在这里象你道一声祝贺了。要知道,我的程序在第一次编译成功的时候是没有得出和上面相同的结果的。


  MD5的安全性

  MD5相对MD4所作的改进:

   1. 增加了第四轮;

   2. 每一步均有唯一的加法常数;

   3. 为减弱第二轮中函数G的对称性从(X&Y)|(X&Z)|(Y&Z)变为(X&Z)|(Y&(~Z));

   4. 第一步加上了上一步的结果,这将引起更快的雪崩效应;

   5. 改变了第二轮和第三轮中访问消息子分组的次序,使其更不相似;

   6. 近似优化了每一轮中的循环左移位移量以实现更快的雪崩效应。各轮的位移量互不相同。

分享到
  • 微信分享
  • 新浪微博
  • QQ好友
  • QQ空间
点击: