???此账号为华为云开发者社区官方运营账号,提供全面深入的云计算前景分析、丰富的技术干货、程序样例,分享华为云前沿资讯动态
本文分享自华为云社区《智能优化算法(1)——遗传算法》,原文作者:我是一颗大西瓜 。
智能优化算法又称现代启发式算法,是一种具有全局优化性能、通用性强且适合于并行处理的算法。这种算法一般具有严密的理论依据,而不是单纯凭借专家经验,理论上可以在一定的时间内找到最优解或近似最优解。常用的智能优化算法有:遗传算法 、模拟退火算法、禁忌搜索算法、粒子群算法、蚁群算法。
本文主要为大家带来遗传算法和蚁群算法的详细解读。
1. 遗传算法
遗传算法(Genetic algorithm, GA),模拟生物在自然环境中遗传和进化的自适应(对遗传参数的自适应调整)全局优化(随机变异不断寻找全局最优解)算法,基本思想是“优胜劣汰”,是应用最广泛和效果最显著的智能优化算法。
1.1 编码方法
算法模型通过对个体(individual,也即solution)进行二进制编码(01编码)、自然数编码、实数编码和树型编码。在对个体进行适应度计算时需要进行解码,实现问题的解空间与算法搜索空间的相互转换。
1.2 适应度函数
每个个体都有一个适应度函数(Fitness),对这个个体的优劣进行定量评价,适应度函数是算法执行“适者生存、优胜劣汰”的依据。适应度函数需要根据目标函数进行设置,令g(x)g(x)表示目标函数,令G(x)G(x)表示适应度函数,从目标函数g(x)g(x)映射到适应度函数G(x)G(x)的过程称为标定。
对于最大值优化问题,可直接将g(x)g(x)设定为适应度函数G(x)G(x),即G(x)=g(x)G(x)=g(x);对于最小值优化问题,G(x)=-\min g(x)G(x)=?ming(x);在遗传算法规定中,适应度函数为正值,但上述二式无法保证,因此需要加上最小值或者最大值以及分段函数。
1.3 选择操作
选择(Selection)是从当前群体中选择适应度函数值大的个体,这些优良个体有可能作为父代繁殖下一代,个体适应度函数越大,被选择作为父代的概率越大(有可能!)
选择算法有很多,最基本的是轮盘赌算法:
P_i =\frac{F_i}{\sum_{i=1}^{N}F_i}Pi?=∑i=1N?Fi?Fi
其中,P_iPi?表示个体被选择的概率;F_iFi?表示个体的适应度函数值;NN表示种群规模。
根据选择概率P_iPi?将圆盘形赌轮分为NN份,第ii个扇形的中心角为2\pi P_i2πPi?。随机产生0到1之间服从均匀分布的数rr,落在第ii个扇形的累计概率为Q_i = \sum_{j=1}^i P_jQi?=∑j=1i?Pj?,则选择个体ii,重复NN次,就可以选择NN个个体。
1.4 交叉操作
两个个体通过交叉(Crossover)互换染色体部分基因而重组产生新的个体,也就是产生新解。交叉前需要进行随机配对。
一般情况下,对二进制编码的个体采用点交叉的方法,也就是在两个配对字符串随机选择一个或者多个交叉点,互换部分子串从而产生新的字符串
两个个体是否进行交叉操作由交叉概率决定,较大的交叉概率可以使遗传算法产生更多新解,保持群体多样性,并能防止算法过早成熟,但是交叉概率过大会使算法过多搜索不必要的解区域,消耗过多的计算时间,一般取值在0.9左右。
1.5 变异操作
生物进化中,某些染色体可能会发生基因突变(Mutation),从而产生新的染色体,这也是产生新解的另外一种重要方式。交叉操作相当于进行全局探索,变异操作相当于进行局部开发,这也是智能优化算法必备的两种搜索能力。
个体能否变异取决于变异概率,过低会使得部分有用基因无法进入染色体,不能提高解的质量;过大会使子代丧失父代优良基因,导致算法失去从过去搜索经验的学习能力,一般情况下,变异概率取值为0.005左右。
值得注意的是,Rudolph通过马尔科夫链相关理论证明仅采用选择、交叉和变异三个操作的遗传算法不能收敛到全局最优解,而采用精英保留策略的遗传算法是全局收敛的。
算法的整体流程如下图所示:
1.6 算法分析
一个好的智能算法,关键在于全局探索和局部开发能力的平衡。全局探索的目的是对解空间进行更全面的探索,局部开发主要目的是对已知区域进行更精细的搜索,希望获得质量更好的新解。
遗传算法可以通过设置选择压力实现全局探索和局部开发的平衡。在算法运行初始阶段,设置较小的选择压力可以使算法具有较好的全局探索能力,进行广域搜索;算法运行后期,设置较大的选择压力可以使算法进行比较精细的局部搜索。
选择压力的设置可以从适应度函数标定和选择策略。
适应度函数标定,在算法早期,应当缩小个体适应度差距,减少淘汰率;算法运行最后阶段,扩大个体适应度差距,保证算法能在高适应度个体对应解区域进行集中搜索,加快算法收敛速度。常用方法有:
- 线性尺度变换 H= aF bH=aF b
- \sigmaσ截断法 H= F (\hat F - c\sigma)H=F (F^?cσ)
- 幂律尺度变换 H= F^\alphaH=Fα
选择策略,低选择压力可选择多种类型的个体,加强对未知解区域的搜索,避免算法陷入局部极值,但算法优化速度会变得缓慢;高选择压力可选择优良个体,加快优化速度但群体多样性会下降,减少搜索到全局最优值的概率。除了轮盘赌算法外,选择策略还有:
- 分级选择法
- 锦标赛选择法
- Boltzmann选择法
2. 蚁群算法
2.1 蚁群优化算法
蚁群优化(Ant ColonyOptimization, ACO)算法是源自大自然生物界的仿真类算法,其思想吸收了蚁群觅食过程中的行为特性。蚁群算法在TSP问题、二次分配问题、图着色问题、车辆调度问题、通信网络中的负载均衡问题等表现出良好的优化性能。
大自然中的蚂蚁没有视觉,依赖于同类散发在环境中的信息素决定自己何去何从,孤立的蚂蚁沿着同伴的信息素轨迹移动,同时释放自己的信息素,从而增强了该路线上的信息素数量,随着越来越多的蚂蚁通过该路线,一条较佳的路线就形成了(这条路径不一定最短,但对于NP-hard问题而言足够了)。
2.1.1算法模型
以旅行商问题(TravelingSalesman Problem, TSP)为例,在图论中称为最小Hamilton问题。
记G = (V,E)G=(V,E)为赋权图,V=(1,2,3,...,N)V=(1,2,3,...,N)为顶点集,EE为边集,各顶点间的距离d_{ij}dij?已知(d_{ij}