矩阵的逆怎么求(线性变换的运算例题)

80酷酷网    80kuku.com

线性代数是考研数学必考的一部分。矩阵更是线性代数的基础,因此,掌握矩阵的知识点在整个线性代数的模块复习中占据十分重要的地位。这几年经常考察初等变换和初等矩阵的题目。

(1)矩阵A可逆的充要条件是|A|不等于0

判断矩阵A为可逆矩阵的方法为:

线性代数之可逆矩阵的求法方法总结

判断矩阵A为可逆矩阵的方法

逆矩阵的运算性质:

线性代数之可逆矩阵的求法方法总结

逆矩阵的运算性质

求逆矩阵的方法:

线性代数之可逆矩阵的求法方法总结

求逆矩阵的方法

题型一:求矩阵的逆矩阵

分析:求矩阵的逆矩阵可以通过伴随矩阵和用初等行(列)变换方法来求解。

例1:

线性代数之可逆矩阵的求法方法总结

分析:这是基础题,考场上虽不会有这种考题,但求逆必须要过硬,因为求逆会出现在矩阵方程、相似等题目。

解:本题应用初等变换变换的方法求解

线性代数之可逆矩阵的求法方法总结

题型二:已知矩阵方程求矩阵的逆

例2:设n阶矩阵A满足A^2 2A-3E=0,

(1) 证明A,A 2E可逆,并求它们的逆;

(2)当A不等于E时,判断A 3E是否可逆,并说明理由。

解:

线性代数之可逆矩阵的求法方法总结

分享到
  • 微信分享
  • 新浪微博
  • QQ好友
  • QQ空间
点击: