关于到现在等差数列前n项和性质是什么这个话题相信很多小伙伴都是非常有兴趣了解的吧因为这个话题也是近期非常火热的那么既然现在大家都想要知道等差数列前n项和性质是什么小编也是到网上收集了一些与等差数列前n项和性质是什么相关的信息那么下面分享给大家一起了解下吧
等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列...
扫码加微信公众号,免费领取英语学习资料
等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。
等差数列前项和公式
1.Sn=n*a1+n(n-1)d/2
2.Sn=n(a1+an)/2
等差数列前n项和公式推导
1.Sn=a1+a2+......an-1+an也可写成
Sn=an+an-1+......a2+a1
两式相加得:
2Sn=(a1+an)+(a2+an-1)+......(an+a1)
=n(a1+an)
所以Sn=[n(a1+an)]/2
2.如果已知等差数列的首项为a1,公差为d,项数为n,
则 an=a1+(n-1)d代入公式公式一得
Sn=na1+ [n(n+1)d]/2
等差数列基本性质
1.公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d。
2.公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd。
3.若{an}{bn}为等差数列,则{an±bn}与{kan+bn}(k、b为非零常数)也是等差数列。
4.对任何m、n,在等差数列中有:an=am+(n-m)d(m、n∈N+),特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.
5.一般地,当m+n=p+q(m,n,p,q∈N+)时,am+an=ap+aq。
6.公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差)。
7.下表成等差数列且公差为m的项ak.ak+m.ak+2m.....(k,m∈N+)组成公差为md的等差数列。
8.在等差数列中,从第二项起,每一项(有穷数列末项除外)都是它前后两项的等差中项。
9.当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数。