关于到现在因式分解的方法与技巧初中这个话题相信很多小伙伴都是非常有兴趣了解的吧因为这个话题也是近期非常火热的那么既然现在大家都想要知道因式分解的方法与技巧初中小编也是到网上收集了一些与因式分解的方法与技巧初中相关的信息那么下面分享给大家一起了解下吧
把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式)。它是中学...
扫码加微信公众号,免费领取英语学习资料
把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式)。它是中学数学中最重要的恒等变形之一,被广泛地应用于初等数学之中。
因式分解的定义
把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解。
多项式因式分解的步骤
1.如果多项式的各项有公因式,那么先提公因式;
2.如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
3.如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;
4.分解因式,必须进行到每一个多项式因式都不能再分解为止。
因式分解的方法与技巧
1.提公因式法:公因式是指各项都含有公共的因式。提公因式法是指当一个多项式的各项都有公因式时,把这个公因式提出来,将多项式化成两个或多个因式乘积的形式。
2.公式法:公式法主要是指平方差公式,完全平方公式,立方差公式,立方和公式。
3.十字相乘法:十字相乘法口诀:首尾分解,交叉相乘,求和凑中。
4.待定系数法:首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
5.换元法:有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。
6.求根公式法:令多项式f(x)=0,求出其根为x1,x2,x3,……xn,则该多项式可分解为f(x)=(x-x1)(x-x2)(x-x3)……(x-xn)
7.分组分解法:能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。如:a·x+a·y+b·x+b·y=a·(x+y)+b·(x+y)=(a+b)·(x+y),把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配。