立方差公式(立方换算公式表)

80酷酷网    80kuku.com

立方差公式(立方换算公式表)初高中数学的真正差异

数学语言更抽象,思维方法更理性

一是数学语言在抽象程度上突变:历来学生都反映,集合、映射等概念难以理解,离生活很远,似乎很“玄”。

二是思维方法向理性层次跃迁:数学语言的抽象化对思维能力提出了更高的要求。

三是知识内容的整体数量剧增,加之时间紧、难度大,这样,不可避免地造成学生不适应高中数学学习,而影响成绩的提高。

小编建议同学们理解新旧知识的内在联系,学会对知识结构进行梳理,并且要多做总结、归类,建立主体的知识结构网络。

初高中数学知识脱节在哪里?

1.立方和与差的公式

这部分内容在初中教材中很多都不讲,但进入高中后,它的运算公式却还在用。比如说:

(1)立方和公式:(a+b)(a^2-ab+b^2)=a^3+b^3;

(2)立方差公式:(a-b)(a^2+ab+b^2)=a^3-b^3;

(3)三数和平方公式:(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac;

(4)两数和立方公式:(a+b)^3=a^3+3a^2b+3ab^2+b^3;

(5)两数差立方公式:(a-b)^3=a^3-3a^2b+3ab^2-b^3。

2.因式分解

十字相乘法在初中已经不作要求了,同时三次或三次以上多项式因式分解也不作要求了,但是到了高中,教材中却多处要用到。

3.二次根式中对分子、分母有理化

这也是初中不作要求的内容,但是分子、分母有理化却是高中函数、不等式常用的解题技巧,特别是分子有理化。

4.二次函数

二次函数的图像和性质是初高中衔接中最重要的内容,二次函数知识的生长点在初中,而发展点在高中,是初高中数学衔接的重要内容.二次函数作为一种简单而基本的函数类型,是历年来高考的一项重点考查内容,经久不衰。

5.根与系数的关系(韦达定理)

在初中,我们一般会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程,而到了高中却不再学习,但是高考中又会出现这一类型的考题,对学生有以下能力要求:

(1)理解一元二次方程的根的判别式,并能用判别式判定根的情况;

(2)掌握一元二次方程根与系数的关系,并能运用它求含有两根之和、两根之积的代数式(这里指“对称式”)的值,能构造以实数p、q为根的一元二次方程。

6.图像的对称、平移变换

初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,对称轴、给定直线的对称问题必须掌握。

7.含有参数的函数、方程、不等式

初中教材中同样不作要求,只作定量研究,而在高中,这部分内容被视为重难点。方程、不等式、函数的综合考查常成为高考综合题。

8.几何部分很多概念(如重心、垂心、外心、内心等)和定理(如平行线分线段比例定理,射影定理,圆幂定理等),初中生大都没有学习,而高中教材多常常要涉及,并经常是在解题过程中直接运用。

工欲善其事必先利其器,说了这么多,小编为了大家以后高中的“幸福”生活拼了!

送上最全的高中数学知识点思维导图,帮助同学总结梳理,赶紧收藏起来!

初高中数学的真正差异初高中数学的真正差异初高中数学的真正差异初高中数学的真正差异初高中数学的真正差异初高中数学的真正差异初高中数学的真正差异初高中数学的真正差异初高中数学的真正差异初高中数学的真正差异

分享到
  • 微信分享
  • 新浪微博
  • QQ好友
  • QQ空间
点击: