关于到现在三角函数的诱导公式怎么用这个话题相信很多小伙伴都是非常有兴趣了解的吧因为这个话题也是近期非常火热的那么既然现在大家都想要知道三角函数的诱导公式怎么用小编也是到网上收集了一些与三角函数的诱导公式怎么用相关的信息那么下面分享给大家一起了解下吧
很多学生都不知道三角函数的诱导公式怎么用,下面和小编一起学习一下吧,供大家参考。三角函数的诱导公式的用法1、公式一到公式五函数名未改变,公式六函数名发生改变。2、公式一...
资源下载地址
很多学生都不知道三角函数的诱导公式怎么用,下面和小编一起学习一下吧,供大家参考。
三角函数的诱导公式的用法
1、公式一到公式五函数名未改变,公式六函数名发生改变。
2、公式一到公式五可简记为:函数名不变,符号看象限。即α+k·360°(k∈Z),﹣α,180°±α,360°-α的三角函数值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号。
3、对于kπ/2±α(k∈Z)的三角函数值:
①当k是偶数时,得到α的同名函数值,即函数名不改变;
②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan。(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。(符号看象限)
诱导公式的作用有什么
三角函数诱导公式的作用:可以将任意角的三角函数转化为锐角三角函数。例如:
1、sin390°=sin(360°+30°)=sin30°=1/2。
2、tan225°=tan(180°+45°)=tan45°=1。
3、cos150°=cos(90°+60°)=sin60°=√3/2。
记住六个三角函数在四个象限里的符号.六个三角函数分为三组:①sin,csc;②cos,sec;③tan,cot;每一组内的两个函数无论在哪个象限,它们的符号总是相同的.然后按上面的顺序记住:第一象限:+++;第二象限:+--;第三象限:--+;第四象限:-+-。
常用的诱导公式
sin(α+k·360°)=sinα(k∈Z)
cos(α+k·360°)=cosα(k∈Z)
tan(α+k·360°)=tanα(k∈Z)
cot(α+k·360°)=cotα(k∈Z)
sec(α+k·360°)=secα(k∈Z)
csc(α+k·360°)=cscα(k∈Z)
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sec(π+α)=-secα
csc(π+α)=-cscα
扫码加微信公众号,免费领取英语学习资料