关于到现在四点共圆什么时候学这个话题相信很多小伙伴都是非常有兴趣了解的吧因为这个话题也是近期非常火热的那么既然现在大家都想要知道四点共圆什么时候学小编也是到网上收集了一些与四点共圆什么时候学相关的信息那么下面分享给大家一起了解下吧
四点共圆是初中时候学的知识点。四点共圆的定义:如果同一平面内的四个点在同一个圆上,则称这四个点...
资源下载地址
四点共圆是初中时候学的知识点。四点共圆的定义:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。证明四点共圆有一些基本的方法。
证明四点共圆方法
方法1: 从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆。
方法2 :把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆。(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。)
方法3 :把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。
方法4 :把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆。(根据托勒密定理的逆定理)
方法5 :证被证共圆的点到某一定点的距离都相等,从而确定它们共圆。
扫码加微信公众号,免费领取英语学习资料